
FCOO: output manager extensions
By

Jorn Bruggeman

Task 1: support on-demand computation of fields selected for output
Fields are made available for output by registering them (once) with the field manager. The routine

that achieves this (type_field_manager%register) now accepts two optional arguments to

indicate whether the field is needed for output:

• used (logical): this is an optional argument with intent(out) that on return

indicates whether the field is to be included in any of the output files. That does not

necessarily imply the field needs to be computed at every time step (because it may be

saved only every N timesteps, or it may not be needed for the current subdomain); that

information is provided by used_now.

• used_now (logical): this is an optional argument with the target attribute that will be

updated dynamically during the simulation to indicate whether the field is needed for the

next saving of output. Based on the current value of this flag, the program can decide at

each time step whether to compute the value of the field.

The initial value of used_now (on return of type_field_manager%register) equals the

value of used (if it were provided). Thus, used_now offers a superset of the functionality

supported by used; the latter is maintained for backward compatibility and for situations where it is

not desirable or possible to provide a logical that remains valid for the life time of the simulation

(note that the field manager will keep a pointer to used_now in order to keep updating it).

The update of used_now flags happens at the start of a time step, typically just after the update of

the model time. This is achieved by a call to the new output manager routine

output_manager_prepare_save, which takes four integer arguments: julianday,

secondsofday, microseconds, n. The first three argument describe the current calendar

date and time (note: models that do not use microseconds should provide 0 for that argument), the

fourth is the current model time step. This syntax is the same as used for the call to

output_manager_save at the end of the model time step, which performs the actual save.

In short:
To use new functionality, fields should be registered with

logical, target :: needed

call field_manager%register('NAME', 'UNITS', 'LONG_NAME', …, used_now=needed)

After this, the needed variable will indicate at all time whether the value of the field will be used

during the next saving of output.

For this to work, output_manager_prepare_save must be called at the start of the model

time step (this is currently implemented in GOTM)

The new functionality has been implemented by extending the field manager and output manager

provided with GOTM (and used by GETM). This has been done in GOTM’s master branch.

Task 2: support online interpolation along depth dimension
This task makes it possible to output depth-dependent fields at arbitrary distances (in meter) below

the current water surface and above the bottom. This is a non-trivial because the thicknesses of

model layers in GOTM and GETM are variable: they vary in time with changes in surface elevation,

and in the horizontal (GETM-only) with bathymetric depth due to the use of sigma coordinates.

Thus, to output the value of a field at a fixed distance from surface or bottom requires online

interpolation in depth, with interpolation indices and weights that are time and space-dependent.

All functionality delivering this task is implemented in a separate GOTM branch named “output-

operators”

To implement the desired functionality, GOTM’s output manager has been rewritten to allow for any

number of “operators” to be applied to model fields in order to obtain a final field to output. One

such operators is “interp”, which linearly interpolates a model field in one dimension (typically:

depth) to a set of user-specified coordinates. This operator is specified in the output.yaml

configuration file, which for instance can contain:

daily_mean:

 time_unit: day

 time_step: 1

 time_method: mean

 operators:

 - type: interp

 dimension: z

 coordinates:

 - -5.

 variables:

 - source: *

This will output daily means (due to the time_unit/time_step/time_method attributes) of

all available variables (due to source: *) to a file named daily_mean.nc, with all depth-

dependent variables being interpolated first – that is, before temporal averaging - to a fixed vertical

position of -5 m. In GOTM, this implies a fixed distance from the bed (typically 5 m below mean sea

level).

It is worth noting that the saving of depth-independent variables is not affected: they will be

included in output as usual. For the new depth axis used by the interp operator, a new depth

dimension will be created in the output file. This dimension will be named

<ORIGINAL_DIMENSION><INDEX>, with <ORIGINAL_DIMENSION> being the name of the dimension

along which interpolation operates (i.e., “z”), and <INDEX> being a positive integer. This integer

defaults to 1, but will be incremented if needed to ensure the final dimension name is unique.

To use the moving water surface as reference level, the operator specification can be expanded to

include an “offset” attribute, as follows

 operators:

 - type: interp

 dimension: z

 offset: zeta

 coordinates:

 - -5.

This assumes the surface elevation (a scalar in GOTM) is named “zeta” when registered with the field

manager (in GETM the surface elevation is named “z” or “ssen”). When the above is used with

GOTM, all depth-dependent variables are saved at a fixed position of 5 m below the current water

surface.

In all of the above, the depth dimension is named “z” (in GETM this can also be “sigma” or “level”),

and it is assumed to have been assigned a coordinate variable. In GOTM, the lines responsible for

this are

call fm%register_dimension('z',nlev,id=id_dim_z)

call fm%register('z', 'm', 'depth', dimensions=(/id_dim_z/), data1d=z(1:nlev),

coordinate_dimension=id_dim_z)

Note the use of the “coordinate_dimension” argument, which makes the “z” model field the

coordinate variable for the “z” dimension.

It is possible for a model to have several possible coordinate variables for depth, e.g., a variable that

contains the sigma level, and another that contains the actual depth in meters. To allow the interp

operator to work with either, it is possible to explicitly specify the variable that defines the original

coordinate, using the “source_coordinate” attribute. For instance:

 operators:

 - type: interp

 dimension: z

 offset: elev

 source_coordinate: z

 coordinates:

 - -5.

This is helpful in cases where the default depth coordinate registered with the field manager is not

depth in meters, e.g., in GETM simulations with vert_cord set to a value other than 2.

To specify multiple depths (distances from surface/bottom) at which fields are to be output, more

values for coordinates can be specified, e.g.,

 operators:

 - type: interp

 dimension: z

 offset: zeta

 source_coordinate: z

 coordinates:

 - -5.

 - -2.5

The target coordinate values must always be increasing.

The interp operator uses linear interpolation at all times. For out-of-bounds coordinates (i.e., target

coordinate values that lie outside the current range of the source coordinate), the interp operator

support different options that are configurable through an additional out_of_bounds_treatment

attribute. This can take the following values:

• 1: substitute missing value. This will use the variable’s default fill value (configurable when

registered with the field manager)

• 2: use nearest value (“clamping”). This will use the value at the nearest boundary.

• 3: extrapolate. This will use the nearest two points to estimate the slope, which is then used

to extrapolate from the closest boundary.

For instance, the following specifies to use the value from the nearest boundary for all target

coordinates that are (currently) out of range:

 operators:

 - type: interp

 dimension: z

 offset: zeta

 source_coordinate: z

 out_of_bounds_treatment: 2

 coordinates:

 - -5.

 - -2.5

GETM implementation
For the above to work, te output/field managers need to know the 3D depth coordinate (in meter)

of all registered fields. GETM currently does not provide this unless vert_cord is set to 2. For other

values, all information needed to reconstruct depth is provided (e.g., bathymetric depth, elevation,

sigma values), but the actual depths of cell centres are not. This needs to be remedied before the

new output functionality can be used. We suggest to provide a 3D geopotential coordinate field

(similar to GOTM’s “z”) that specifies the height above mean sea level for cell centres. In

combination with surface elevation (“ssen” or “z”) and bathymetric depth (“bathymetry”) this

suffices to interpolate to fixed geopotential coordinates, fixed distances below the surface, and fixed

distances above the bottom. In the examples below be assume the 3D geopotential coordinate is

named “zc”.

Interpolate to geopotential coordinates (5 m below mean sea level)

operators:

 - type: interp

 dimension: <sigma|level>

 source_coordinate: zc

 coordinates:

 - -5.

Fixed distance below current water surface (5 m)

operators:

 - type: interp

 dimension: <sigma|level>

 source_coordinate: zc

 offset: ssen

 coordinates:

 - -5.

Fixed distance above bottom (5 m)

operators:

 - type: interp

 dimension: <sigma|level>

 source_coordinate: zc

 offset: -bathymetry

 coordinates:

 - 5.

Note that in this case the reference depth is the bottom (a negative value), and the target

coordinates must therefore be positive.

	FCOO: output manager extensions
	Task 1: support on-demand computation of fields selected for output
	In short:

	Task 2: support online interpolation along depth dimension
	GETM implementation

